October 8

Get Clickers and whiteboards

Energy and Work

Change in momentum

$$\Delta \vec{p} = \vec{F}_{net} \Delta \epsilon \qquad = force + imes + ime$$

$$Change energy = force + imes displacem + imes displa$$

Practice with scalar product

$$\vec{f}_{C} = \langle 3,7,4 \rangle_{M} \qquad \vec{f}_{f} = \langle 3,10,13 \rangle_{M}$$

$$\vec{F} = \langle 10,-30,30 \rangle_{N} \qquad \omega = ?$$

$$\Delta \vec{F} = \vec{f}_{f} - \vec{f}_{C} = \langle 3-3,10-7,13-4 \rangle_{M}$$

$$= \langle -1,3,8 \rangle_{M}$$

$$W = F_{x} \Delta x + F_{y} \Delta y + F_{z} \Delta z = (16(1)) + (-30(3)) + (30(4))$$

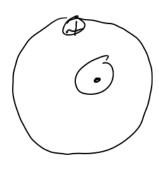
$$W = F_{x} \Delta P$$

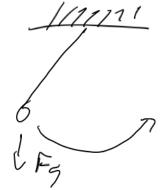
$$= 170 N_{m} = 170 J$$

$$= 1F[1\Delta P] \cos \Theta$$

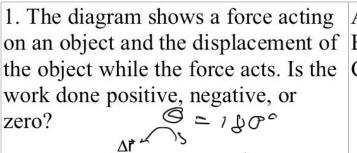
Tangible: Ain't it a Drag?

$$\Delta \vec{p} = \vec{F}_{net} \Delta \vec{t}$$

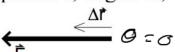

$$\vec{F}_{net} = \Delta \vec{p} = .35N$$


$$\omega = 45^{\circ}$$

$$W = F_{x}\Delta x + F_{y}\Delta y + F_{z}\Delta z$$


$$W = |\vec{F}||\vec{r}|\cos \theta = !N(.7m)\cos 45^{\circ}$$

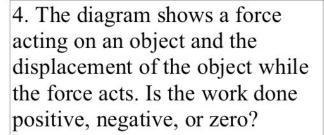
$$= .0145 = 14m5$$



Clicker Questions

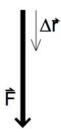
- A) positive
- B) negative
- C) zero

2. The diagram shows a force acting on an object and the displacement of the object while the force acts. Is the work done positive, negative, or zero?

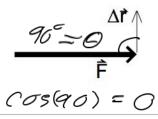


- A) positive
- B) negative
- C) zero

3. The diagram shows the force acting on an object and the displacement of the object while the force acts. Is the work done positive, negative, or zero?



- A) positive
- B) negative
- C) zero



- B) negative
- C) zero

5. The diagram shows a force acting on an object and the displacement of the object while the force acts. Is the work done positive, negative, or zero?

- A) positive
- B) negative
- C) zero

$$W = \vec{F} \cdot \Delta \vec{r}$$

$$W = \vec{F} \cdot \Delta \vec{r}$$

Where does Energy come from?

$$\Delta E = \vec{F} \cdot \Delta \vec{F} \implies dE = \vec{F}_{x} d_{x} = \frac{dp_{x}}{de} d_{x}$$

$$\frac{dE}{dx} = \frac{dp_{x}}{dt}$$

$$\vec{P} = \{mc^{3} = \sqrt{1 - (u)^{3}}, mc^{3}\}$$

$$E = mc^{3} \int est \ energy$$

Kinetic Energy

$$E_{t} = E_{l-st} + E_{motion}$$

$$V_{mc} = m_{c} + K + K_{inetic} = E_{l-sy}$$

$$K = V_{mc} - m_{c} = (8-1) m_{c}$$

 $K = E - E_{rest} = E_{rest}$ $Mc^{3} = \sqrt{mc^{3} - mc^{3}}$ $1 = \sqrt{1 - 1} =$

Kinetic Energy at Low Speeds

$$(1+\varepsilon)^{n} = 1 + \frac{n}{1}\varepsilon + \frac{n(n-1)}{2\times 1}\varepsilon^{2} + \frac{n(n-1)(n-2)}{3\times 2\times 1}\varepsilon^{3} + \cdots$$

$$(1-\left[\frac{|\bar{v}|}{c}\right]^{2}\right)^{-\frac{1}{2}} = 1 + \frac{(-\frac{1}{2})}{1}\left(-\left[\frac{|\bar{v}|}{c}\right]^{2}\right) + \frac{(-\frac{1}{2})(-\frac{1}{2}-1)}{2\times 1}\left(-\left[\frac{|\bar{v}|}{c}\right]^{2}\right)^{2} + \frac{(-\frac{1}{2})(-\frac{1}{2}-1)(-\frac{1}{2}-2)}{3\times 2\times 1}\left(-\left[\frac{|\bar{v}|}{c}\right]^{2}\right)^{3} + \cdots$$

$$\approx 1 + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} + \frac{3}{8}\left[\frac{|\bar{v}|}{c}\right]^{4} + \frac{5}{16}\left[\frac{|\bar{v}|}{c}\right]^{6} + \cdots$$

$$= 1 + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} - \frac{1}{8}\left[\frac{|\bar{v}|}{c}\right]^{4} + \frac{5}{16}\left[\frac{|\bar{v}|}{c}\right]^{6} + \cdots$$

$$= 1 + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} - \frac{1}{8}\left[\frac{|\bar{v}|}{c}\right]^{2}\right] + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} - \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2}\right] + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} - \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2}\right] + \frac{1}{2}\left[\frac{|\bar{v}|}{c}\right]^{2} + \frac{1}{$$

Clicker questions

Q6: A ball whose mass is 2 kg travels at a velocity of

$$< 0, -3, 4 > m/s.$$

$$A$$
) < 0, -6, 8 > J

B)
$$< 0, -3, 4 > J$$

What is the kinetic energy of the ball?

Q7: A ball whose mass is 2 kg	A) 0 J
travels at a velocity of	B) 25 J
< 0, -3, 4 > m/s.	C) 6e8 J
	D) 9e16 J
What is the rest energy of the	E) 1.8e17 J
ball?	

Q8: Consider an electron
(mass 9e-31 kg) moving with
speed v = 0.9c. What is its rest energy?

A) 7.3e-31 J
B) 8.1e-14 J
C) 1.05e-13 J
D) 1.86e-13 J
E) 2.7e8 m/s

Erast = mcd

Q9: Consider an electron (mass 9e-31 kg) moving with speed v = 0.9c. What is its total (particle) energy?

A) 7.3e-31 J B) 8.1e-14 J C) 1.05e-13 J D) 1.86e-13 J E) 2.7e8 m/s

$$E=1mc^{3} = \sqrt{1-(a)^{3}} qe^{-31} kg (3x10^{8} m_{g})^{3}$$

= 1.86 e^{-13} J

Q10: Consider an electron (mass 9e-31 kg) moving with speed v = 0.9c. Its rest energy is 0.8e-13 J, and its (total) particle energy is 1.86e-13 J. What is its kinetic energy?

- A) 7.3e-31 J
- B) 3.28e-14 J
- C) 8.1e-14 J
- D) 1.06e-13 J
- E) 1.86e-13 J

Work done by non-constant forces

VPython simulation of a spacecraft flyby